Software Process Modeling and Execution
within Virtual Environments

John C. Doppke, Dennis Heimbigner, and Alexander L. Wolf

Software Engineering Research Laboratory
Department of Computer Science
University of Colorado

Boulder, CO 80309 USA

{doppke,dennis,alw}@cs.colorado.edu

University of Colorado
Department of Computer Science
Technical Report CU-CS-821-96 November 1996
(Revised August 1997)

A version of this report to appear in
ACM Transactions on Software Engineering and Methods

(© 1996 John C. Doppke, Dennis Heimbigner, and Alexander L. Wolf

ABSTRACT

In the past, multi-user virtual environments have been developed as venues for entertain-
ment and social inleraction. Recent research focuses instead on their utility in carrying
out work in the real world. This research has identified the importance of a mapping be-
tween the real and the virtual that permits the representation of real tasks in the virtual
environment. In this paper we investigate the use of virtual environments—in particu-
lar, MUDs (Multi-User Dimensions)—in the domain of software process. In so doing,
we define a mapping, or metaphor, that permits the representation of software process
within @ MUD. The system resullting from this mapping, called PROMO, permils the
modeling and execution of software processes by geographically dispersed agents.
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1 Introduction

Virtual environments (VEs) have typically been developed in the past primarily for their enter-
tainment value. Indeed, the earliest virtual environments, called Multi-User Dungeons, were built
as games involving the exploration of rooms containing various obstacles and opponents. Recently,
however, a movement has begun to create more general virtual environments, called Multi-User
Dimensions (MUDs), whose main purpose is not gaming but rather the building of virtual worlds
involving more general (and some would say, more positive) social interactions. While the earliest
systems with this purpose were still intended for entertainment, the promise of an extensible virtual
environment has intrigued researchers of collaborative work systems and has prompted questions
about the viability of such systems in aiding work and collaboration in the real world.

We are investigating the use of MUDs in the particular collaborative work domain concerned
with software development, called software process. MUDs appear to be a suitable context for
performing software processes for two main reasons. First, VEs help make software processes—
which are sometimes viewed as formal and forbidding control mechanisms—more accessible to users
through their appeal to a familiar metaphor of operation. In current software process support envi-
ronments, the metaphor is usually drawn directly from computer science. Typically, either a person
views the environment and the actions carried out within it as a series of database transactions, or
as the execution of some state machine, such as a Petri net. Second, the VE serves as a model for a
convenient mix of synchrony and asynchrony within a process. Activities that take place simulta-
neously may take advantage of their simultaneity within the VE, but the VE does not require such
synchrony. Similarly, the VE serves as a model for both centralized and distributed interaction.

In this paper we examine the use of virtual environments in support of software process model-
ing and execution. We begin in the next section by briefly reviewing the domain of software process
in terms of its primitive concepts of activities, agents, artifacts, resources, and products. We then
describe in Section 3 the central concepts found in MUDs, concentrating on the features present
in one very popular MUD called LambdaM00 [11]. There are a variety of possible metaphors that
can serve to capture software processes within MUDs. These are explored in Section 4. The imple-
mentation of one of the metaphors in a system called PROMO is described in Section 5. Section 6
provides several interesting and important lower-level details of the PROMO implementation. An
example software process drawn from the literature is used in Section 7 to illustrate the modeling
features of PROMO; further details of the example are provided in Appendix A. We conclude with
a summary and a look at future work.

2 Software Process

Software process has become a major area of research in software engineering [23, 25]. One
concern of that research is the representation of processes using a consistent, and often formal,
process model. A second concern is the development of technologies to support the actual execution
of processes. These technologies are often collected together into what are referred to as process-
centered environments. In this section we review the basic concepts of software process in order to
provide a context for describing how software processes can be captured in MUDs.



2.1 Definitions

An activity (or task) denotes a sequence of one or more actions (or operations) executed by
people or tools as part of a software process. Presumably, the definition of a particular activity
is guided by an understanding of the semantics of the process. For example, we may consider
“testing” an activity because we have a semantic understanding of how the specific actions within
testing, such as generating test cases and running the program against test cases, fit together. The
appropriate granularity of activities modeled within a particular process is an issue that must be
left to the discretion of the process engineer. Adding to this flexibility would be an ability to define
subtasks within larger tasks, thus forming a hierarchy of activities.

The definition of a particular activity need not be specific about what actions constitute the
activity or in what order they occur. Moreover, the means of defining the activity depends greatly
on the process modeling language or languages being used. The definition of an activity may, for
example, consist of a specification of the conditions that must hold before the activity is considered
complete, rather than a prescriptive set of actions.

Actions within the process may or may not be understood to be atomic. For the sake of
simplicity, we assume here that actions are indeed atomic. Actions may be grouped together into
transactions to permit the atomicity of groups of actions. The execution of an action often requires
the availability of an appropriate tool, although some actions (e.g., a decision made by a person)
may not be associated with any tool.

The sequencing of activities is a key factor in how a process is executed. This sequencing is
usually not linear. In fact, the sequencing of future activities usually depends on the state of the
process that results from past activities.

Any discussion of actions and activities within a process raises the issue of agents—the humans
or machines involved in carrying out an activity. When multiple people collaborate in carrying out a
set of activities, the issue of who performs which activity is an extremely important question. Many
accounts of software process include the notion of a role, a unit of functional responsibility [15].
In such models, a role is assigned to each activity, and one or more of the human agents who
are authorized to take on this role must do so in order to complete the activity. Other accounts
of process [29] eschew this notion of roles because of its conflation of issues that should remain
separate: threads of control, unification of similar activities, and access control.

Part of any process is the need to secure resources, those aspects of the process that are expended
(e.g., time and money) or may be otherwise limited in some way. For example, carrying out a testing
activity may require scheduled use of a testing laboratory. The activity may not proceed unless the
laboratory is available. Given this definition, we may consider a tool to be an example of a resource,
since it may be licensed and therefore subject to limitations on its use. A process description may
delineate a set of policies dictating how resources may or may not be shared and whether resources
are finite or infinite.

Software process governs the manipulation and definition of the artifacts within a system. That
is, activities within a process must be carried out on pieces of the system being developed, and
these pieces must be explicitly defined. Often the definition of artifacts entails the definition of
a set of artifact types. Such a typing system may be used to guide the definition of the set of
actions that may be taken on an artifact. Since artifacts often form parts of larger artifacts, their
interrelationships must also be defined.

Finally, the process concerns the product itself. We may also choose to partition the product



into subproducts in much the same way as we partition tasks into subtasks.

2.2 Process-centered Environments

In order for a process-centered environment to support the modeling and execution of a process,
it must first address all of the aspects of the process and model them in some convenient and
systematic way. First, it must be able to represent all the entities listed above within the process.
This representation need not be complicated. For example, a system may represent human agents by
simply using user identifiers provided by the operating system. Typically, however, a representation
of some process entity consists of an abstraction over the machine and operating system. For
example, artifacts may be reified within the system in such a way as to obscure the actual files
within the file system that contain the artifacts’ data, as in Marvel [34]. This contrasts with process-
centered environments such as Merlin [32] and SPADE [1], which provide their own databases to
hold the actual project artifacts.

Closely coupled with the representation of process entities is the manifestation of connections
among these entities. For instance, a system must not only represent tools and artifacts but also
encapsulate the ability to invoke a tool on a specific artifact.

Finally, an environment must provide an interface through which the user may interact with the
process. While the use of the word “interface” suggests a discussion of user interface (e.g., whether
it is graphical or textual), the term is intended here to designate a whole set of methods through
which the user may query and control the environment. The user may wish to know information
about the current state of the process—for example, what human agent is carrying out which task
with respect to what artifact(s)—and the environment must provide a means of answering these
questions. Furthermore, it must provide this means within the framework of the representations
chosen for the entities and their connections. Finally, part of this interface may—but need not—
involve some proactivity on the part of the process; that is, the environment may be designed to
take actions on behalf of the user.

3 MUDs and Virtual Environments

As mentioned above, MUDs were first created as simple games to be played by several users
simultaneously [3]. The term MUD generally refers to a system that permits multiple users to
connect to it (via some network) and that presents to these users a virtual world in which each
user is represented as a player. A diagram of this architecture is given in Figure 1. MUDs began as
text-only systems, and nearly all are still essentially text-based. However, many now are beginning
to offer more sophisticated interfaces of various kinds [6, 20, 31, 47].

The world that the MUD provides to the user consists of a set of rooms and, within those rooms,
myriad objects, including other players. The MUD’s world represents space by means of spatial
relationships among objects—for example, connections between rooms—but not specific distances
or directions. This permits the system’s description of the world and the user’s traversal and
manipulation of the world by simply textual means. MUDs thus differ from other virtual reality
systems that wish to present an accurate three-dimensional (or even two-dimensional) view of the
world. An example of interaction with a MUD is given in Figure 2.

Noticeable differences of opinion exist on the “point” of a MUD. While MUDs were begun
as multi-user games in the spirit of adventure games (e.g., ADVENT [43]), the concept of what
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Figure 1: Client/Server Architecture of a Typical MUD.

>look

Corridor

The corridor from the west continues to the east here, but the way is blocked by
a purple-velvet rope stretched across the hall. There are doorways leading to the
north and south.

You see a sign hanging from the middle of the rope here.

>read sign

This point marks the end of the currently-occupied portion of the house. Guests
proceed beyond this point at their own risk.

— The residents

>go east

You step disdainfully over the velvet rope and enter the dusty darkness of the
unused portion of the house.

Figure 2: Sample Transcript of a Session with a MUD.




constitutes a MUD has grown over time to encompass the general field of wvirtual environments.
Accordingly, while many MUDs still exist primarily as games—and many MUD aficionados enjoy
them for this reason—other systems have eliminated many of their game-oriented aspects and have
focused instead on the creation and exploration of their virtual worlds. Systems of this latter kind
are often as social in focus as they are technical. Many MUDs are devoted to a certain topic
(e.g., biology [6] or media research [39]), and such MUDs serve as sites for virtual collocation and
collaboration.

The difference of opinion on MUDs suggests a dual approach to our study of MUDs: first, in
terms of details particular to MUDs, and second, in terms of virtual environments in general.

3.1 LambdaMOO

The original MUD, entitled “Multi-User Dungeon” (and originally abbreviated MUD but referred
to as MUD1 in the literature), was created in 1978 [3, 11]. The immediate popularity accorded to MUD1
led to the creation of numerous MUDs derivative of MUD1. Many of these MUDs were essentially
similar, both in features and in spirit, to MUD1. However, one derivative system, TinyMUD, shifted
the focus from gaming to the building of the virtual world and to the social interaction within
that world. TinyMUD’s constructive focus thus spawned a new breed of MUDs, including an object-
oriented version called TinyM00, where “MOQO” stands for “MUD, Object-Oriented”.

In October 1990 Curtis designed a new system, called LambdaM00, based on TinyM0O0 [11].
LambdaM00 provided a fully object-oriented language tightly coupled with an object-oriented
database. The term LambdaM00 refers both to the basic MOO system and to its original oper-
ation as a public virtual environment at XEROX PARC. Here we generally use the term to refer
to the system.

3.1.1 Architecture

A LambdaM00 system consists of two parts: the server program and the database. The server
provides the low-level functionality for the system—in particular, it provides the MOO code inter-
preter and database engine. However, much of the functionality actually used by the LambdaM00
is encapsulated within objects in the database. As a result, a LambdaM00 is seldom started from
scratch. Usually, the MOO administrator (“archwizard”) downloads a database of core objects as
the starting point for the MOO.

The most common core database is the database distributed along with the LambdaM00 system
itself, called LambdaCore [17]. The objects in this database, totaling about 100 to 150, comprise
some basic MUD-related objects (e.g., player, room, and exit) along with some utility functions
(e.g., string and list manipulation, coding and network utilities). The core database is built by the
maintainer of the LambdaM00 at XEROX PARC, who periodically extracts the core objects from
that LambdaM00’s database, builds LambdaCore so that it contains only those objects, and then
offers this database for downloading.

This server/database architecture greatly aids the implementation of systems within LambdaM00.
Instead of modifying the server’s code to add new features, the developer may simply add or modify
database objects and program them in the MOO’s object-oriented programming language. Some
server patches and modifications do exist, and recently new “core” databases have been offered by

MOOs besides the LambdaM00 at XEROX PARC (e.g., JHM [31]).



3.1.2 Object Structure

Objects in LambdaM00 are identified by their object identifiers and are characterized by their at-
tributes, properties, and verbs (akin to methods in more conventional object-oriented systems) [19].
The attributes on each object consist of a flag designating the object as a player, the object 1D
of the object’s parent, and the object IDs of its children. Each object has exactly one parent and
may have any number of children. This parent/child relationship forms a hierarchy that repre-
sents a combination of typical OO notions of inheritance and instantiation. Each object has eight
built-in properties that govern naming, location, and permissions. In addition, the set of verbs and
properties on any object may be extended indefinitely.

The LambdaM00 object model is sufficiently rich to support the modeling of any type of object
the process engineer may need. However, it is perhaps more useful to understand what types of
objects are commonly encountered in the course of using the system. These common objects include
the following.

e Players: Every user of the system is represented by a player.

o Rooms and exits: A room is a space designed to contain players, and an exit is a one-way
connection between rooms. While these are very simple objects, they are extremely important
in forming the basis of the spatial metaphor in LambdaM00. On a technical level, these rooms
and exits in LambdaM00 form a directed graph that the players navigate. More importantly,
however, nearly all action that takes place in a LambdaM0O centers around some room, so
navigating among the rooms is of paramount importance. Rooms and exits also provide some
hooks for access control, in that a room or exit may refuse to accept an object.

e Bots: Since the LambdaM00 server is capable of performing actions independent of players,
various kinds of automated agents—including robots, animals, and the like—are often found
in LambdaM00. Some bots, like the so-called “Housekeeper”, perform useful actions within the
MOO. Others are just for testing out ideas and for entertainment.

o Ulility objects: Not usually seen by ordinary LambdaM00 users, utility objects generally en-
capsulate some set of functionality available to programmers. For example, the Code utilities
object contains a number of functions that help the system and the programmers maintain

MOO code.

Note that the semantics of these objects resides primarily in convention; often LambdaM00 does not
enforce the meaning of a given object very strictly. For example, one could pick up a room and
carry it to remote parts of the world—all without disrupting the people inside.

3.1.3 Containment

Two built-in properties on every LambdaM00 object are .location and .contents, and together
these properties form a containment hierarchy of all objects within the MOO. That is, each object
has another object as its location and zero or more objects as its contents. LambdaM00 maintains
these properties carefully across all objects to ensure that they remain consistent and acyclic—i.e.,
an object’s location must contain the object, and no object may contain itself, either directly or
indirectly.



It is interesting to note that LambdaM00 does not necessarily assign one specific meaning to
the .location and .contents properties. If an object’s .location is a room, then we may say
that the room contains that object; if .location is a player, we may say the player is holding the
object; if .location is the so-called “recycler” object, then the object is a “dummy” object waiting
to be recreated. The fact that containment, possession, and object status differ from one another
semantically does not cause any difficulty with respect to the use of these properties.

More details on objects and their properties and verbs may be found elsewhere [19]. In this
paper, we supply only those details about objects that are important to our discussion. Examples
of software process-related objects are given in Section 5.

3.2 Virtual Environment Research

Our interest in MUDs focuses on their place in the more general field of virtual environments.
While some researchers [20] have used the term virtual reality to describe systems such as MUDs,
this term typically refers to systems that attempt to represent the physical world accurately (e.g,
by depicting three dimensions). In MUDs this is often not the case: the absence of a realistic spatial
metaphor, the ability to perform tasks that are impossible in the physical world (e.g., teleporting
objects), and the MUD-specific communicative and social forms [12] all point to a major difference
between MUDs and reality. Accordingly, we use the more generic term virtual environment to refer
to any system that presents a (possibly unrealistic) world or space for users to visit and inhabit.

Bruckman [8, 9, 10] has contributed a great deal to the field of virtual environment research,
particularly in the use of MOOs for educational purposes. In particular, Bruckman and Resnick [9]
argue that the construction and reconstruction of the virtual world leads to a heightened effective-
ness in collaborative learning and interaction. Based on their experience in running MediaM OO [39],
they believe in the effectiveness of the constructive aspect of the virtual in encouraging interaction
within a professional community.

Kaplan’s work on the use of virtual environments to accomplish work in the real world makes
some useful distinctions [24]. He points out the existence of a mapping between the virtual world
and the real—in his terms, between the “sites and means” (spaces and methods) of the virtual and
the “social world” (real-world domain). He defines the term locale to designate some portion of the
social world that corresponds to a given element of the virtual—that is, a locale is an abstraction
of the virtual space in terms of the semantics of the real-world domain.

One commercial system that uses a virtual environment metaphor to facilitate real-world work is
Taligent’s Places for Project Teams. The product uses spatial concepts—in particular, the concept
of a room—to model cooperative work on a common project. The room is used as a gathering
space for all those working on a project, and it is used to store documents common to the project.
This virtual collocation permits what Taligent terms “serendipitous communication”: the ability
to communicate with those who are in the same room (and are therefore working on the same
project).

4 Capturing Software Processes within Virtual Environments

Given the potential utility of virtual environments as systems for accomplishing work in the real
world, this section explores how such environments might capture software processes. We begin
by discussing the motivation for such an approach, continue by describing several metaphors for



process execution within a virtual environment, and conclude by discussing some other key issues
in capturing software process in virtual environments.

4.1 Motivation: Finding a Metaphor for Process

As pointed out above, the primary feature of a virtual environment that makes it attractive
for accomplishing work is its mapping of the real-world domain into the virtual. Any system that
exploits such an environment, then, must define this mapping with respect to the domain of interest.
We refer to this mapping as the metaphor of the environment.

In Section 2 we describe some requirements for what a process-centered environment must
provide to its users. Chief among these requirements is the need to represent within the environment
the entities of software process and the connections among those entities. In the case of a virtual
environment, this representation must be defined in terms of the environment’s metaphor.

We must be extremely careful, however, in defining this metaphor. If the virtual environment
is to provide a useful abstraction of software process, then it needs to satisfy certain requirements.

e Correspondence: The environment should represent each software process entity in a manner
that preserves the properties of that entity. For example, the environment’s metaphor should
not unduly restrict access to artifacts.

o (ollaboration: The environment ought to provide facilities for collaboration among the people
executing the process. Since one of the more appealing aspects of virtual environments is
virtual collocation—the ability to be in the same “space” with another person in the virtual
world despite physical separation from that person in reality—a VE-based process execution
system should use virtual collocation to facilitate collaboration.

o Realism: While a virtual world need not be identical to the real (i.e., physical) world, it
should represent a limited extension of concepts in the physical world. For example, while
moving objects from room to room is generally quite natural within environments, picking
up rooms and moving them through other rooms would tend to disrupt the metaphor (and
makes the users of the environment a little confused).

There may be times when these criteria represent a tradeoff. In some cases, for example, one
may achieve greater realism at the cost of diminished correspondence, such as by not allowing a
room to be picked up and moved to another room even though this might otherwise correspond
to a reasonable activity in the process. Furthermore, it may be acceptable or even preferable for a
metaphor not to correspond exactly to software processes as we understand them. Such a metaphor
may lead to new insights into process because of its unique perspective.

4.2 Metaphors

While the set of potential mappings between the virtual and the real worlds is nearly limitless,
we wish to choose one that respects the features of both domains as much as possible. We proceed,
therefore, by selecting the most prominent features of both domains and attempting to map them
to one another.

Since we have chosen LambdaM00 as our virtual environment framework, we have also chosen
the concepts of rooms, exits, and players as the most prominent aspects of our environment. Since



mapping human beings onto players is such an obvious approach, we presume that this is a part
of any metaphor, and so we examine different metaphors by mapping the other process entities
onto the room structure. We then attempt to evaluate each metaphor with respect to the criteria
mentioned above.

In performing our evaluation of metaphors, we examine how the metaphor might represent
a simplistic testing activity within the MOO. The testing process entails the following two main
activities.

1. The tester (a person) obtains sole use of a testing laboratory.
2. The tester performs specified tests on a program using the facilities of the testing laboratory.

To be sure, in order for a metaphor to facilitate the execution of this process, it must be able to
represent all the entities of the process: the tester (an agent), the testing laboratory (a resource),
the test specification and results (a complex of artifacts), and the program under test (a prod-
uct). Furthermore, the metaphor should represent the activities themselves so as to make process
execution possible.

4.2.1 Task-centered Metaphor

A first metaphor to consider is that in which each task (i.e., activity) corresponds to a room
within the MOO. Since we define a process as a sequence of activities, a mapping of activity onto
room suggests a mapping of activity sequences onto the room layout using exits. Such a system
could represent actions in one of several ways—for example, by reifying tools and using them to
effect the action, or by using the MOQ’s verbs to invoke actions.

Using the task-centered metaphor for our testing activity could be extremely simple: a single
room would correspond to the testing activity itself; the executable, test input, and desired output
files would be objects within the room; the human performing the testing would enter the room
to engage in the activity; and either the person or the executable would not be permitted to leave
the room until the testing had been performed (and perhaps until a report had been generated).
To be sure, a process modeler could be more specific than this in describing the activities—instead
of a single room, the player could, for example, carry the artifacts through rooms representing the
testing and report-generating subtasks.

This metaphor corresponds well to more conventional notions of process activities, especially
those that use process modeling languages based on state machines or Petri nets. The state of a
process is modeled by the state of the artifacts together with the rooms within which those artifacts
currently reside. The metaphor also maps well to a fairly natural human concept of physical motion
as progress. One can imagine, for example, the MOO artifact objects as the manifestation of tokens
in a Petri net and the player being the force that pushes them through transitions. In terms of
collaboration, the metaphor supports people working on the same task occupying the same room
together. Those performing distinct tasks, however, do not enjoy the collocation that the MOO
offers.

One respect in which the task-centered metaphor, as stated thus far, fails to correspond to the
real world is, interestingly enough, in the mapping of person to player. Since people often work on
several different tasks “simultaneously”—that is, they alternate among these tasks—the MOO using
this metaphor needs to provide a means for a person to leave one activity and return to another
activity, restoring the original activity’s context as appropriate. LambdaM00 itself does not provide



this capability. Therefore, in PRoOMO, we have had to add a facility to support the interleaving of
activities by players. We refer to this problem as one of “multi-threading” to suggest the similarity
between the interleaving of process activities and the manner in which operating systems alternate
among threads of control within a concurrent program. The multi-threading difficulty is not unique
to the task-centered metaphor; in fact, it is shared by nearly all of the other metaphors.

Since the task-centered metaphor forms the basis for PROMO, we examine this metaphor in
greater detail in Section 5.

4.2.2 Agent-centered Metaphor: Workspaces

In the agent-centered metaphor we map a person’s workspace to a room. A workspace acts as
a synthesizer of multiple activities to be carried out by the same human agent. The MOO player
representing a person performs only one task at a time, but the person’s many “threads” are unified
in that all the person’s activities are carried out in one room. In our testing example, the artifacts
are again objects in the MOQO. In this case, the player brings them into their personal workspace
in order to carry out the testing activity.

One clear advantage to this metaphor is its realism: the notion of workspace is quite familiar
to anyone who has ever had an office. The correspondence of this metaphor with notions of
process, however, is unclear because no mapping between the remaining process entities and the
MOO is obvious. Furthermore, such a metaphor would have to elucidate how collaboration would
occur; while a player could certainly visit someone else’s workspace, the process system ought to
specify more closely how players—and, perhaps more importantly, artifacts—should travel between
workspaces. Finally, how such a metaphor should represent an activity is not clear, and without
an explicit representation of activities the execution of a process is much more difficult.

4.2.3 Artifact-centered Metaphor

In an artifact-centered metaphor, the artifacts are mapped onto rooms and the agents onto
players. While this could be a viable metaphor—for example, exits could be used to represent
relationships among artifacts (i.e., rooms)—it immediately seems a bit cumbersome in that the
artifacts would then be stationary. The ability to combine artifacts, at least spatially, would be
lost, and since processes often involve manipulating and combining artifacts, this is a point where
the metaphor severely fails to correspond to reality. The same criticism applies to a tool-centered
metaphor, since we may easily consider a tool to be an artifact of a process.

Work done by Masinter and Ostrom [38] in integrating Gopher into a MOO seems to bear out
our hypothesis about stationary artifacts. Their first attempt at providing access to Gopher within
a MOO was a “Gopher room” that acted much like a traditional Gopher client. However, they
discovered that the need to travel to the room both for the tool and for the data made the tool
very cumbersome, and as a result they opted for metaphors that provided for greater portability
of tools and data (e.g., a portable “Gopher slate”).

4.2.4 Resource-centered Metaphor

In a resource-centered metaphor, the MOQ’s rooms would correspond to resource instances
within the process. Being in a resource’s room would then indicate possession of an instance of
that resource. For example, a player’s presence in a “testing laboratory” room would represent
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that the player had the use of that laboratory, and a player’s presence in a room corresponding to
a tool (particularly a tool with finitely many licenses) would represent the player’s possession of
one license. Furthermore, the room (and its exits) would enforce the appropriate sharing policy for
that resource. For example, a meeting room could be used for only one meeting at a time, whereas
a room for a given tool might permit several occupants (users of the tool) at the same time.

In the testing example, a room could correspond to the laboratory used to test the product.
Various restrictions could be placed on this room and, thus, on the laboratory. For example, only
one person (or group of people) may use the room for one purpose at a time.

In a sense, the resource-centered metaphor corresponds to one common use of rooms in the
physical world. Since a real room consists of a finite amount of space, the room itself is a resource,
as in the case of a meeting room or office. Furthermore, a real room serves as a convenient means
of organizing other resources, such as electricity, network wiring, climate control, and the like.

However, the mapping of MOO room to resource fails to preserve the resource-oriented aspects
of real rooms. First, the physical limitations imposed by the real world are not present in the MOO;
a room in a MOQO may be virtually infinite in size, and rooms may be created and destroyed quite
readily. Comnsequently, associating real rooms with MOO rooms becomes unnecessary, since these
constraints of the physical world do not apply within the MOO.

Second, and perhaps more importantly, assigning a MOO room to each resource fails to scale
when multiple resources must be secured. In particular, a severe scaling problem arises whenever
the MOO must ensure exclusive access to more than one finite resource. For example, suppose
that our testing activity requires not only sole use of one of m laboratories but also sole use of a
testing tool with n licenses. It would be convenient to allow the player to be in a laboratory room
and a tool room in order to represent the separate resource instances being held simultaneously.
However, multi-location is not possible within a MOO-—the player may be in only one room at
a time—so the room must represent combinations of resources held by the player. Hence, in our
example, the MOO must use mn rooms to represent the many laboratory-license combinations.
This multiplication of rooms for additional resources becomes unacceptable when several resources
must be secured.

4.2.5 Product-centered Metaphor

A product-centered metaphor would map each separate product onto a different room. If
subproducts were defined, then they could be represented as separate rooms connected to the parent
product room either by exits or by containment. As before, each agent would be represented as a
player and each artifact as an object.

In this metaphor, the testing example would be represented by means of a room corresponding
to the executable along with objects representing the test input and output. A player would execute
the process by going to the room corresponding to the executable and invoking the appropriate
actions there.

This metaphor would certainly facilitate a great deal of collaboration among people working
on the same project, although those working on corresponding tasks in separate projects would
not be collocated and would not have such collaboration facilitated. While the metaphor supports
a view of software process based on product structure, most process systems model processes
based on activities and not on products; hence the metaphor does not fare well with respect to
correspondence. In addition, this metaphor has the same problem as the task-centered metaphor
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in its need to support a person’s ability to switch among threads.

4.3 Hybrid Metaphors

Having defined the semantics of several different mappings of process onto virtual environments,
we note that in the real world people do not require strict semantics in order to operate within
some metaphor. Spaces (buildings) in the real world may be combinations of distinct types of
rooms, including task-related rooms (meeting rooms), workspaces (offices), and artifact-centered
rooms (workshops).

Nevertheless, the task of combining different aspects of these metaphors into a single metaphor
is far from simple. Indeed, many systems that support cooperative work allow users to define
the metaphor during execution by designating the meanings of rooms, spaces, etc., as they desire.
However, while people may not have difficulty understanding a composite metaphor, our focus on
the execution of processes makes the well-defined metaphor a crucial piece of our system. A system
cannot use its virtual environment to support process execution without a well-defined metaphor.
For example, constraint checking cannot be integrated into the virtual environment if the virtual
environment cannot represent such concepts as task completion, artifact state, and the constraints
themselves in a consistent fashion. An example of this shortfall can be found in Taligent’s Places
for Project Teams, mentioned in Section 3.2. In this product, the meaning of a room is defined by
the user and, as a result, the room-based metaphor does not support automated process execution
at a system level.

One possible avenue of further research concerns the unification of metaphors—that is, the
ability to provide different metaphors for the same process and the same database, in much the same
way that DBMSs provide multiple views on the same data. Such a system would use the metaphor
as a conceptual “filter” to allow users to understand the interactions among tools, artifacts, etc.,
within the virtual environment, and so metaphors could be considered different views on the same
organization of data. As with the hybridization of metaphors, however, we must tread carefully
on this ground; the metaphors are far from identical. Given the primacy of rooms within virtual
environments, our choice of process entity to be mapped to a room indicates our belief about the
importance of that entity within the process. For example, using a task-centered environment
implies that tasks are central to our understanding of process. Furthermore, a particular mapping
defined by a metaphor implicitly attaches the properties of MOO entities to process entities. For
example, the task-centered metaphor suggests that one person may be working on only one task at
a time because a player may be in only one room at a time.

4.4 Other Issues

Once a means of representing a process within a virtual environment is defined, the environment
must provide the user with an interface that permits the user to interact with processes. While
the interface issue encompasses the narrower issue of user interface, it also encompasses a range
of issues regarding how the user/process interaction should take place within the metaphor of the
virtual environment.

Some features the interface should provide include the following.

e Process state: The environment should be able to represent and answer queries about the
state of a process.
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e Process training: The environment should convey information about how to execute a process
to users—particularly to users unfamiliar with the process.

o Process history: The environment should permit the querying of previous actions within the
current process.

e User interface: The user should be able to interact with the environment in a convenient way.

e Tool interface: The environment should provide simple access to any tools needed to execute
the process.

A second question raised by the fact of supporting process execution concerns the degree of
automation of such a system. While many actions within a process must be carried out by a
human agent, others may often be carried out in automatic fashion. A system that supports
this degree of automation is considered proactive. Various techniques exist for implementing this
automation, including rule bases [30] and events and triggers [1].

Systems that provide little or no proactivity may afford the user a great deal of flexibility in
executing the process, but it is interesting to note that this flexibility may be a liability in many
cases. A user whose actions are not guided by the system may be at a loss as to how to make
progress within the process.

A virtual environment could be used as the basis of either a proactive or a non-proactive system.
In a non-proactive system, the virtual environment would simply assume that the user was capable
of carrying out the appropriate activities within the process, perhaps aided by an operation that
explained to the user what was to be done in the room. On the other hand, a proactive VE-based
system could represent its proactivity in a very concrete way by incorporating this proactivity into
its metaphor. For example, robots could be used to represent that part of the system concerned
with taking actions on behalf of the user; the robot could then invoke actions, carry artifacts from
room to room, and so forth.

5 Implementing the Task-Centered Metaphor

In an effort to illustrate the concepts discussed in the previous section, we have developed
ProMoO, a prototype proscriptive process-centered environment based on the LambdaM00 system.
The metaphor used in PrROMO is the task-centered metaphor described in Section 4.2.1. This
metaphor was chosen simply because it is consistent with the structure underlying most existing
process-centered environments, and therefore provides a good first example application of virtual
environment technology. It is conceivable to develop prototypes based on the other metaphors,
which would be a fruitful area of future work.

This section discusses the design decisions made in creating PrROMO in light of the metaphor
discussions of the previous section. In doing so, we evaluate the specifics of the metaphor using the
criteria set out in Section 4.1. A discussion of several lower-level implementation issues of PROMO
appear in Section 6.

5.1 Capturing the Metaphor

ProOMO captures the task-centered metaphor in LambdaM00 through a particular mapping of
process entities to MOO representations. As the discussion reveals, the role of process modeler
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is, as in all process-centered environments, a key role. OQur discussion below highlights the likely
effects of different modeling choices.

5.1.1 Artifact: Object

Each artifact within the process is represented by a single object within PrRoMoO. That is, while
the data of the artifact is assumed to exist outside the MOO (presumably in the file system),
every artifact to be manipulated within the process is represented by a corresponding object within
Promo. The PROMO object contains a URL [5] that acts as a pointer to the actual artifact. Like
Marvel’s use of the file system as its database [33], the use of URLs within PROMO permits the
easy storage and manipulation of potentially complex data. By contrast with Marvel, using URLs
rather than the local file system permits the distribution of artifacts in a manner that makes sense
for the process.! While the data of the artifact resides in the network resources specified by the
URL, some of this information may also be replicated in the PROMO object; a similar approach is
also taken in Marvel.

The artifact-to-object mapping provides us immediately with an instance of the modeling gran-
ularity issue. On one hand, if the PROMO object contains a great deal of information about the
actual artifact, keeping the artifact and its corresponding object in sync becomes a difficult task.
Any tool that modifies the artifact must propagate all information about the changes to the artifact
back into PRoMO. (Section 6 provides greater detail about the mechanism by which this propa-
gation is accomplished.) On the other hand, if an object contains too little information about the
artifact, the state of the artifact—and thus the state of the process—becomes difficult or impossible
to track within PRoMo. This is an issue faced by any process-centered environment that represents
actual artifacts by objects [22].

PrOMO can, of course, represent information about an artifact that might not be contained
within the artifact’s file(s). In particular, properties of the PROMO object can represent inter-
object relationships and artifact state. For example, a source module may contain a “pointer”
to (i.e., the unique identifier of) its related object module, and an object module may contain
pointers to the executables that use it. In addition, an object may contain a property indicating
its completion status as the result of a manager’s approval.

The “type” of an artifact is generally represented within PRoMO by exploiting the parent/child
relationships inherent in the LambdaM00 database. Every object in LambdaM00 has exactly one
parent and zero or more children. This parent/child relationship represents a combination of the
ideas of inheritance and instantiation. For example, the modeler may create a generic source-
code module object, create a generic C language source-code module object as its child, and then
create specific source-code module objects as children of the generic C language source-code module
object. Indeed, one of the core PROMO objects is a generic artifact object called $artifact, and
all artifact objects are expected to be descendants of $artifact.

Figure 3 shows the LambdaM00 definition of a generic C language source-code module object.
The .url property holds the URL of the artifact, whose value would be set only within the instances
of this generic object. The type of the artifact, expressed here in MIME-like notation [7], is given
by the properties .mime major and .mime minor. .modreq is a property that contains a list of the
modification requests that refer to the source-code object. Finally, .object contains the object

1Of course, Marvel predated the concept of URLs.

14



Object ID: #162

Name: C source module
Parent: Source module (#117)
Properties:
description: '"The generic C source code module."
url: ""
mime major: "text"
mime minor: '"c-source"
modreq:

object: #-1

Figure 3: Definition of a Generic C Language Source-Code Object.

identifier of the PROMO object that corresponds to the compiled code for the module (i.e., the “.0”
fileq for this “.c” file).

While this mapping of artifact to object is a fairly natural one, it does pose some problems with
respect to our criteria for evaluating a metaphor. The single-containment property mentioned in
Section 3 raises an interesting question about artifacts: How does the MOO represent the concept
of having access to an artifact? The requirement that a player pick up an artifact’s object before
using the artifact does not correspond to the typical process assumption that many people may
read an artifact simultaneously. On the other hand, a multiple-access paradigm, while preserving
correspondence with typical process concepts, would be difficult to model within the MOO without
causing surprising actions-at-a-distance and thereby violating our realism criterion. Essentially,
this problem introduces the concept of pointers not only into PROMO’s implementation but also
into the user’s view of PROMO, whereas the physical world does not contain pointers in this sense.

Although this problem is as yet unsolved in PROMO, one possible solution would entail intro-
ducing a concept of “virtual presence”—i.e., a player would be able to have (and pick up, hand
to other players, etc.) an ethereal copy of an object without having the actual object.? Such a
solution would preserve the feel of the MOO as a conceivable (if slightly implausible) extension
of the physical world, satisfy the technical constraints of implementing software process, and still
maintain the consistency of the metaphor.

5.1.2 Human Agent: Player

As suggested by the description of artifacts above, the human agents in the process are repre-
sented as players in PROMO. As mentioned in Section 4.2.1, this poses a problem in that it fails to
account for the multiple “threads” of activity that a person carries out. While some systems use
the notion of roles to solve this issue, we eschew this solution, since the notion of role implied by
such an approach is a conflation of too many issues [29].

Instead, we identify each of the person’s threads as a persona: that is, a persona corresponds to
a person within a certain process at a certain stage (i.e., working on a certain task) with respect to

2 A possible implementation for this concept is suggested by Smith’s solution to an unrelated problem [45].
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Object ID: #130
Name: Generic Developer
Parent: generic programmer (#57)
Verbdefinitions:
Q@addpersona
@persona
@rmpersona
Property definitions:
personae
persona
Properties:
personae: {}

persona: "'

Figure 4: Definition of a Generic Developer Object.

one or more artifacts. In this way, we may continue to identify a person with a LambdaM00 player;
the person may change threads by simply switching personae. The fact that we define a persona as
being at a certain stage with respect to artifacts is crucial in that it permits us to define the process
in terms of the artifacts’ state and not in terms of the human agents. In moving away from the
notion of roles, we have effectively freed the users to act independently in various contexts (i.e., in
various processes) without constraint.

The player object in LambdaM00 was augmented within PROMO to yield a new generic object,
called the generic developer object, as shown in Figure 4. Every user of PROMO is intended to
be a child of this generic developer object. The properties and verbs on this object all govern the
creation, selection, and deletion of personae. .persona holds the name of the current persona, and
.personae holds the information corresponding to each persona (indexed by name); the default
values for these properties are indicated as null. The verb :@addpersona creates a new persona
corresponding to the current activity, and :@rmpersona deletes a persona. Finally, :@persona
permits switching between personae (or displays the name of the current persona).

5.1.3 Action: Verb

A given action (or operation) within a process is modeled within PRoOMO as a verb. For example,
a player may edit an artifact by issuing the command

edit <object-name>

where <object-name> is the name of the object corresponding to that artifact. These verbs are
designed so that they may be invoked either by a player or by Promo itself (i.e., by a robot).
The similarity between the semantics of process actions and those of MOO verb calls suggests
this mapping. A process action is intended to be a single, atomic operation on the artifact, and a
request for the action should result in the immediate invocation of the action. However, an action
may take an arbitrarily long time to complete. Similarly, within the MOO, a single verb call is also
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intended to take place instantaneously, but its long-term effects may not be felt until some time
later, particularly if the verb involves interaction with another player or with a robot.

Since the player actually corresponds to a networked user who may be geographically distant
from the MOO server, the invocation of an action must be carefully coordinated with the user’s
client. We have chosen an architecture for action invocation that relies on a “smart client” on the
user’s side. When an action is invoked, the MOOQO issues to the client a command to invoke the
action along with a set of information about the action. In this way, we push the decision about
which tool to execute onto the client, ensuring that the appropriate platform-specific tool will be
invoked for the action. The details of action invocation are discussed further in Section 6.

An alternate approach to action invocation would entail the reification of the tool itself. That
is, instead of issuing a verb to perform the action, the player could “hit” the artifact (or other-
wise operate on it) with the tool, and this would invoke the specified action. While we have not
implemented this approach within PRoMO, it is conceivable that it would be desirable, as shown
by experience with GopherMOO [38]. In particular, tool reification could provide the ability to
subclass tools. The process modeler could design, for example, a generic editor tool, and then
subclass that with platform- and artifact-type specific editors.

5.1.4 Task: Room

The centerpiece of the metaphor used in PROMO is the identification of tasks with rooms. Since
a task is a semantically meaningful set of actions, we must specifly how to define tasks and how to
manage task instances, such as when several people are simultaneously executing a process. Within
PRroOMO, a task is defined by a constraint, a set of conditions that must hold before the task is to be
considered complete. The transitions between tasks are represented within the metaphor as exits.
Each exit has associated with it a constraint that, if violated with respect to some object, will not
allow the passage of that object through the exit.

The constraint language developed for use with PROMO is quite generic and allows for many
different types of constraints to be written. However, constraints are intended to apply not to the
players but to the objects being moved through the process. The freedom of movement that results
from this use of constraints is important so that players may switch among multiple personae and
walk through rooms to query the state of a process.

Since the state of the process—the set of locations of artifacts pertinent to the given process—is
controlled only by the exit constraints, PROMO is a proscriptive environment for process execu-
tion [28]. That is, PROMO controls the process only by ensuring that invalid process states do not
occur rather than guiding the process in a specific direction.

In support of the concept of subtasks, PROMO provides the ability to create a “sub-building” —
that is, a building within a room. The sub-building may have as many rooms within it as are
desired, and it may have as many doors as are desired. The sub-building thus enables passage
through a sequence of rooms, with their own exits and constraints, while staying within a larger
room.

The sub-building model provides two main advantages. First, it permits the representation of
subtasks while maintaining the containment of objects. That is, if an object is contained within
a room corresponding to a subtask, it is indirectly contained within the room corresponding to
the parent task. Hence we may ask questions about a running process or about the state of an
artifact simply by phrasing the question as one of containment. For example, we could say that
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an artifact was in the Update subtask of an enclosing Implement task. Second, sub-buildings are
a means of implementing transactions. For example, the first room in a sub-building could have
an exit constraint that a transaction has begun, and the sub-building’s exit door could require the
successful termination of that transaction. The main disadvantage of the sub-building model is
that it does not correspond to a physical phenomenon; enclosed spaces within larger rooms are not
commonly found in reality.

As discussed in sections 4.2.1 and 5.1.2, PROMO supports a notion of “threading” that is con-
cretely represented by the concept of personae. Personae contribute to a mechanism for representing
process instance. The movement of the persona indicates the progress of a given process. Persona
can also handle highly automated processes, since they can be attached to bots as well as people.
Additionally, some parts of the process instance are mapped to objects. Thus, rather than creat-
ing a new persona for each test case, for example, test cases are represented as objects, and their
room location and associated attributes provide information about the object’s status vis-a-vis the
process.

5.1.5 Resources

The metaphor used in PROMO does not explicitly represent resources themselves. However,
ProMoO can support standard operations on resources (e.g., acquisition and release) by representing
these operations as activities within a process. For example, a room corresponding to a testing
activity may be preceded by a room that corresponds to the acquisition of a test laboratory, and
the exit constraints may be designed so that only one testing activity may be carried out in the
testing room.

5.2 Atomicity and Transaction Semantics

PRroMoO, since it is based on LambdaM00, only allows an object to be in one place at a time and
to be picked up by one player at a time. Thus, PROMO naturally supports a restricted form of
atomic action: only one player can be performing an action on an object at any given time. But
there are many relationships among objects, and ideally one would like to include many objects
within the boundaries of an atomic transaction. As mentioned above, sub-buildings could be used
to designate transaction boundaries, so one can achieve the desired effect by bringing all relevant
objects inside such a sub-building.

But PromMO’s ability to support a general transaction semantics is limited. In particular, the
actual artifacts are stored outside of PROMO and so may be modified independently of PROMO’s
actions, without regard to any notion of transaction that might be present inside PRoM0O. On the
other hand, if the objects referenced by PRoOMO were actually stored within a database system
supporting transactions, then PROMO could invoke operations on that database to implement the
required transactions. Thus, traversing an exit into a sub-building might invoke a begin-transaction
operation, while exiting that sub-building might invoke an end-transaction operation.

Handling transaction abort is a bit more difficult. The simple abort action can be handled by
providing a special abort exit. But abort also implies rollback, so there must be some mechanism
for PrRoMO to modify its state (including contained objects) to be consistent with the aborted state
in the database. At the very least, PROMO could track all objects modified within the sub-building.
On abort, it would then rebuild the state of each modified object from the database state.

18



5.3 Interface

While the semantics of the process-to-MOQO mapping are important, the interface by which users
and tools interact with PROMO is equally important. Below we discuss how PROMO addresses the
interface issues previously mentioned.

5.3.1 Process State

Because of the task-centered model that PROMO uses, the state of a given artifact can always
be determined by simply examining the artifact object’s location. Although this examination may
sometimes require traversing the containment tree in the case of subtasks, it provides a convenient
way of tracking artifact state.

Since no object exists within PROMO that corresponds to an entire process, however, querying
the state of an entire process is not easily supported within PRoMO. Such a facility would be fairly
straightforward to add by simply exploiting the location of artifacts and the relationships among
artifacts. Currently, a player can “walk” through the set of rooms corresponding to the process
and examine the objects found therein to determine process state. This could be automated by
having a robot perform the walk instead.

5.3.2 Process Training

Trying to understand an unfamiliar process can be a formidable task, particularly in a proscrip-
tive environment wherein finding out what actions are not permitted is easier than finding out what
actions are possible. Since MOOs are text-based and typically foster a great facility with textual
description [42], PROMO places the onus of describing the process on the shoulders of the process
modeler.

Nevertheless, the structure of rooms and exits in PROMO does provide a convenient framework
in which to place process documentation. Since each room corresponds to a task that presumably
has some meaning, the .description property for the room may be set to a string describing that
meaning. Furthermore, rooms within PROMO are designed so that examining a room (using the
LambdaM00 verb look) lists all its exits, which may also have documentation strings attached to
them. Hence, simply by examining a room, the player can find out what the room is intended for
as well as what conditions are necessary to exit in any of several ways.

A further facility for documenting processes is provided in the constraint creation facility. A
parameterized string may be attached to any constraint that the user will see should the constraint
fail. Hence the constraints may be tailored in such a way that they tell the user why the constraint
failed—in terms of the real-world domain and referring to specific objects, personae, and rooms—
and perhaps indicate some action or set of actions that are needed to cause the successful evaluation
of the constraint.

5.3.3 Process History

The facility that PRoMO provides for querying process history, like that for querying process
state, resides with each artifact. That is, one can list what actions have been taken on a given
artifact. While this may not provide enough information to the user about the history of the
collective process, the problem of providing information about process history is one found in most
process systems [36].
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5.3.4 Tool Interface

ProMO’s interaction with tools occur through the “smart client” remote action invocation.
While this is a convenient model for tool invocation, it presumes that all the desired tools will be
invoked from within PrRomMo. However, this need not be the case. For example, an artifact may
be edited or executed from outside the system, and PROMO cannot currently track such outside
actions.

5.3.5 User Interface

One common criticism of MUDs is their basis in textual, as opposed to graphical, communica-
tion. While a text often leads to forms of communication that are of interest to sociologists and
linguists [12, 13, 14, 16, 44], this interface is considered by some to be only adequate at best in
terms of usability [21, 36].

One of the new directions in MOO interface work has involved a move toward world-wide web
(WWW) interfaces. Several MOOs [6, 31, 47] now offer such interfaces. However, it is not clear
that these interfaces typically offer major improvements over the older interfaces, since the data
in MOOs are still largely textual, and hence the WWW interface provides hypertext links but few
graphics. Furthermore, WWW technology does not permit these interfaces to be as interactive as
their textual counterparts, and this has a severe negative impact on the collaborative character of
MUDs. An interface recently added to BioMOO [6] may prove an exception to this rule. BiloMOO
combines a traditional textual interface with a WWW interface.

ProOMO currently uses the traditional textual interface, in large part because of its basis in
LambdaM00. However, while most MUDs rely almost entirely on the room designers to provide ade-
quate descriptions of rooms, PROMO automatically generates a fair amount of (textual) information
to make navigation of the rooms easy for the user. For example, when the user enters a room, a
description of the room is displayed, along with a list of exits. This exit list contains each exit’s
name, destination room, and any additional information provided by the process designer.

A more graphical interface would enhance interactions with the environment in at least the
following ways.

o Nawigalion: Users could benefit from a map of the current room and of those rooms reachable
from the current room—that is, a picture of the process from the perspective of the current
task. A process-wide map would also be helpful for the user, but given the potential number
of connections among rooms, it may not be possible to draw a simple (or even planar) graph
of all the rooms in a process. A similar problem is encountered in graph-based process
representations, such as Petri nets.

o Action invocation: A graphical interface could provide a straightforward means of invoking
actions on an object. This would not only prevent the user from having to type a potentially
complicated command, but could also ensure that the action requested by the user was a
valid one (by providing a list of valid actions in a pop-up menu or list box, for example).

o Administration: Setting up rooms and exits in a MUD can be fairly tedious using a text-based
interface. A graphical interface could greatly enhance the ease of creating and maintaining
processes.
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Figure 5: ProMO System Architecture.

Without a graphical interface, interaction in PRoMO is much like that depicted in Figure 2, but
specialized by the structure and constraints inherent in the process being modeled. An example of
such a process is described in Section 7.

6 The PrROMO System

This section discusses aspects of PROMO as a system, including a description of the system
architecture, discussions of some technical issues encountered in implementing PROMO, and the
methods by which those issues were resolved. While this discussion is by no means intended to be
a complete account of the implementation, it does touch on the important issues that arose as part
of the implementation effort.

6.1 System Architecture

ProMoO is designed to be a centralized environment for managing a distributed process. In
our model, process modeling and execution must occur in a single location, namely within the
LambdaM00 on which PRoMO runs. However, the process itself may be distributed, in that the loca-
tion of artifacts and of action invocations that make up the process may occur on other machines.
PromMoO’s high-level design takes account of and supports this distribution of artifacts and actions.
A diagram of the system architecture is given in Figure 5. The figure illustrates two important
aspects of PROMO’s architecture.

First, the PROMO server is simply the unmodified LambdaM00 server using a special database
designed for PROMO. Users interact with PROMO much as they would interact with any LambdaM00.
The only difference between PROMO and other LambdaM00s is the existence of special objects (and
verbs on those objects) in the PRomoO database.

Second, while PROMO tracks the process as it proceeds, it does not directly govern the actions
that make up the process. Instead, each action that is invoked occurs on the client site. In the
absence of action invocations, the user simply interacts with the textual client TinyFugue [37], which
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communicates with the server via the Telnet protocol [41]. These elements of the architecture are
shown using bold rectangles and edges. When an action is invoked, the server sends information
regarding the action to be invoked to the client, which invokes the action and communicates the
results of the action back to the server. Since these elements of the architecture are instantiated
on-the-fly and are therefore more transitory, they are shown in the figure using thinner rectangles
and edges. The process of invoking actions is described in detail in Section 6.4.

6.2 Artifacts

As mentioned above, each process artifact is represented within PRoOMO by an object that has
$artifact as an ancestor. However, this PROMO object is not intended to store the artifact’s
data. Rather, it merely acts as the manifestation of the artifact within PRoMo. The artifact’s data
are stored in a file specifiable by a URL. Storing and referring to artifacts in this way serves two
purposes.

First, it frees PROMO and the tools it uses from the need to represent the artifact’s data within
LambdaMO00 and to transfer the artifact’s data in and out of the database. Since LambdaM00 is not
designed to handle 8-bit ASCII, both the representation and the transfer of complex data would be
extremely difficult. By keeping the data in a location specified by a URL, we rely on mechanisms
designed to handle such data to perform any necessary transfers.

Second, it permits the system administrator to place artifacts at strategic points of the network
in a manner that makes sense given the network configuration. Since PROMO may be used in a wide-
area context, the local availability of artifacts may be an important issue. Admittedly, PRoMO does
not solve the problem of ensuring continued access to artifacts over a possibly unreliable network.
It simply provides a mechanism for artifacts to be strategically placed over a network by the system
designer.

6.3 Constraints

The exit constraints used in PROMO represent a fairly powerful and complete method of guar-
anteeing task completion on exits. The constraint system is built as an extension of the existing
LambdaMO0 facilities for access control on exits. Whenever a player or object attempts to pass
through an exit, the exit’s verb accept_object is called with the player or object as an argument.
Only if this verb returns a true value may the object pass through the exit. Within ProMO, we
have modified this access system to check exit constraints.

Each exit has a property, .constraint, that stores the constraint that must be satisfied in order
for that exit to permit an object to pass through. The constraint is evaluated with respect to every
object that attempts to pass through the exit and is recursively evaluated on all the contents of
those objects. A false value of the constraint on any contained object will cause the main object’s
attempt through the exit to fail.

Constraints are typed expressions built from the following primitives.

o Relational operators: <, <, >, >, =, #
o Arithmetic operators: 4+, —, *, /, unary negation operator

e Boolean operators: and, or, xor, implies
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Property retrieval: Obtains the value of a property on an object.

o Lel expressions: Permit binding of variables and subsequent reference to these variables.

Type checking: isa-style ancestry checking.
o Quanlifiers: forall, exists

In the current version of PROMO, constraints are specified through calls to special functions that
create an internal representation of those constraints. Since certain types of constraints take other
constraints as arguments, the constraints can be built in a bottom-up fashion by starting with
atoms (string, list, and integer literals), supplying these atoms to functions that build constraints,
supplying the results of these functions to other functions, and so on. Future work on this aspect
of PROMO concerns the design of a constraint language along with a parser for this language so
that this arcane method of specifying constraints can be avoided.

LambdaM00 supports the dynamic addition of constraints, although we do not currently make use
of that facility. Instead, we have found that specifying class-specific and object-specific constraints
has been adequate to capture the constraints of our examples.

Every constraint may have attached to it a string that the user will see should the constraint
fail. Called the rationale, this parameterized string makes the failure of a transition constraint
much easier for a user to understand, and liberal use of rationales is highly recommended to the
process modeler.

Examples of constraints can be found in Appendix A.

6.4 Actions

Our decision about locating artifacts’ data outside of PROMO was largely motivated by consid-
erations of the potential wide-area use of PRoMO and the difficulty of representing complex data
within LambdaM00. Similarly, we assume that the tools necessary to carry out actions within PROMO
will reside outside the system. Furthermore, information about available and appropriate tools for
a given task may depend on the user’s platform, which may not be known to PRoMO. Hence we
must address the issue of how to invoke actions and obtain results from them. While invoking an
action within the MOO is a fairly simple task—as easy as issuing any verb—it begins a complex
set of steps that actually cause the action to be carried out outside the MOO.

A number of MUD client programs exist that provide facilities for triggering actions based on
strings sent by the MUD. By presuming that the client is “smart” in this way, PROMO can simply
print out a block of information about the desired action to the terminal. Currently, the only such
client supported by PrRomo is TinyFugue [37], a line-based client designed for connecting to MUD
servers.

Among the information sent to the client are the following.

e a unique identifier identifying this action;
e the object identifier and name of the object on which the action is being carried out;
o the object identifier and name of the player carrying out the action;

e the object identifier and name of the room in which the action was invoked;
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e the type of the artifact, in MIME-like notation [7]; and
e the name of the action as a string (e.g., edit).

PRrRoOMO also supports arbitrary extensions to this block of information. In particular, a verb exists
in the generic artifact object that can be overridden by artifact subtypes to allow the addition of
arbitrary name-value pairs to this block.

Once the client has recognized that PROMO is sending it a block of information for an action, it
captures this entire block and gives it to promo_command, a Tcl [40] script responsible for invoking
the tool. promo_command uses the action’s name and type, along with a mapping file, in order to
determine which tool should be invoked.

promo_command first parses the block of information received from the client and then consults
its mapping file to find the Tcl procedure that encapsulates the desired tool. Creating these
encapsulations is fairly straightforward. We have currently encapsulated the editors vi and emacs,
the C compiler gce, and a script used to run programs against input files. This method is quite
similar to the Marvel concept of “envelopes” [27].

The encapsulation must provide information to promo_command to return to the MOO. In par-
ticular, it should return the following.

o A list of events that the action generated. The events are strings that should be understood
by the artifacts within the MOO.

o A comment for the user describing the result of the action.

e Optionally, a set of property-value pairs. The properties of the object on which the action
was invoked will be assigned the corresponding values from this list.

Once the action is complete, promo_command sends the results back to PRoMmo. In fact, the mecha-
nism for communicating these results is the same client used by the user, TinyFugue. In particular,
promo_command uses the client to log into the MOO as a pseudo-player called the Notifier, issue
special commands available only to this pseudo-player that update the appropriate artifacts, and
then disconnect.

The information reported back to PROMO is then given to the artifacts. Each event is matched
against the a list of property specifications belonging to the artifact and each specification permits
the automatic setting of properties to certain values should an event occur. For example, an
event modify could set the checked property to a false value, since the previous checking of the
artifact may have been invalidated by the modifications made. Also, if an artifact has a verb
:<event>_trigger for some event type <event>, then this verb is called when the event is found.
For example, a verb :modify_trigger on a source module could be used to notify the corresponding
object module that it is out of date.

This method of communicating with the outside environment is limited in various ways. First,
the method in which PROMO communicates is fairly primitive, since it does not permit the passing
of complex data into or out of the MOO. Second, and perhaps more importantly, PROMO assumes
that it has complete control over the artifacts and that no additional events will take place that
were not begun within PrRoMo. Both of these omissions make the modeling and execution of
processes more difficult within the system, and so PROMO ought to provide better facilities for
tool integration and communication. One possible model for these facilities is provided by the Oz
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process-centered environment [46], which permits interaction with more sophisticated tools, such
as those that are continuously running.

7 Example Process

As an illustration of the use of PROMO in modeling software processes, we have taken the
anomaly report process of an industrial organization and implemented it using PrRoMo. This
process is described by Bandinelli et al. [2], who modeled the process using the SLANG process
modeling language. Following Bandinelli et al., we present only representative portions of the
process.

Because we are implementing only portions of the process here, we do not intend this to be a
full evaluation of PROMO, either on its own or with respect to other process-centered environments.
Rather, the example is intended to demonstrate that a reasonably complex process, previously
captured in a rather sophisticated environment, can indeed be modeled in PROMO.

7.1 Statement of the Process

The process in question concerns the generation and handling of anomaly reports (ARs) for a
software system. The steps in this process are as follows.

1. The configuration management group (SGMR?), which is in charge of the anomaly report,
checks the report for correctness of form (e.g., all the required fields must be filled in).

2. The SGMR then summons the Change Control Board (CCB), which reviews the anomaly
report to determine whether it is a valid report. If the CCB decides that it is not valid, the
report is rejected. If it is found to be valid, the CCB accepts it and generates modification
requests (RIMOs*)—i.e., requests for changes to be made to the product in order to fix the
problem. The CCB may also suspend its investigation of an anomaly report.

3. Development and Qualification groups implement the requested modifications. They also
perform the tests indicated by the CCB and issue a test launch report (TLR). The TLR and
changed artifacts are placed under configuration control.

4. A review team performs V&V activities both on the artifacts modified and on the TLR. They
issue a verification and validation report (VVR) based on their findings.

5. The SGMR receives the VVR and determines the new status of the modification requests and
anomaly report based on the VVR.

The SLANG process modeling language used by Bandinelli et al. results in specifications that
consist of finite state machines and ER (Environment/Relationship) nets [26], which are extensions
to Petri nets in which the tokens represent objects in an object-oriented database. ER nets also
permit the abstraction of nets by providing an “interface” to a given set of places and transitions.

SGMR is the Italian acronym for Sottogruppo Gestione Modifiche e Rilasci.
*RIMO is the Italian acronym for Rlchiesta di MOdifica.
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7.2 Modeling the Process

The three main portions of the process modeled by Bandinelli et al. are: the top-level items
in the process, modeled as a finite state machine; the activity entitled ImplementRIMO, modeled
as an ER net; and the activity entitled RequalificationOfUpdates, also modeled as an ER net.
Accordingly, we illustrate PROMO by showing our implementation of these three process fragments.

Although the PROMO metaphor determines much of the way in which the process is captured, we
must still decide the types of artifacts modeled. Furthermore, we must determine the relationships
among these artifact types. The artifact types we use are as follows.

o Anomaly report.
o Modification request: Many-to-one relationship with Anomaly report.

o Fzecutable: One-to-many relationship with Anomaly report. The executable essentially rep-
resents the product being modified, and it is possible that there should be a separate object,
Product, that represents the product. However, for the sake of simplicity we have assumed
that a product consists of a single executable, and so the identification of product with exe-
cutable is not a difficulty.

o Source module: Many-to-many relationship with Modification request.

o Object module: One-to-one relationship with Source module, and many-to-many relationship
with Ezecutable.

o Test sel: One-to-one relationship with Modification request.

o Teuxt file.

o Input file: Child of Texzt file, and many-to-many relationship with Modification request.
o Qutput file: Child of Text file, and many-to-many relationship with Modificalion request.
o Test report: One-to-one relationship with Test set.

While additional artifact types may exist beyond these—for example, language-specific source and
object code modules, and editor-specific documents—the above constitute the basic types and their
relationships.

7.3 Top-level State Machine

The state machine used in the SLANG model of the process is shown in Figure 6. Since the
room structure in PROMO closely resembles a state machine, we begin our modeling of this top-level
process by attempting to re-cast the state machine in terms of the PROMO metaphor—i.e., in terms
of tasks. In doing so, we must try to determine what task is actually being performed while an
anomaly report is in a given state. If we can identify such a task, then we may consider the state
and the task to be in correspondence. If not, or if the state corresponds to a task already modeled,
then we must consider deleting the state from the new model.

Figure 7 shows the set of rooms designed to correspond to the top-level state machine. The
two models do correspond, particularly in the initial stages when the anomaly report is the main
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artifact being manipulated. For example, the Originated state corresponds to the Review AR room,
since the task performed on an AR in the Originaled state is the task of reviewing the AR.

However, the state machine was intended to track the state of the anomaly report. Many states
of the anomaly report correspond to no task or to several tasks, and these states mark points where
the two models differ. For example, the Pending state in the state machine corresponds to a great
deal of activity with respect to the modification requests and ancillary reports, and so this state
had to be expanded into two separate tasks, each of which has subtasks. The Suspended state did
not correspond to any task, and so it was removed. The intention is that an incomplete anomaly
report may just be left within the room corresponding to the task not yet complete.

The Partially solved state is an interesting case. According to the state machine, it is the
state entered when at least one modification request has been solved. However, the same tasks—
implementing and testing modification requests—are carried out in both Pending and Partially
solved, suggesting that the two states should be unified into a single task. Furthermore, since
the edges incident to Partially solved are, with only one exception, identical to those incident to
Pending, the unification of these two states is trivial. The room resulting from this unification is
the Implement room.

Note that while the edges in Figure 7 are directed, this does not mean that each edge corresponds
to a single one-way exit within PROMO. Since we wish the players to be able to walk freely among
the rooms corresponding to the process, we create for each edge two exits—one forward and one
backward—and simply constrain the backward edge if necessary so that no objects may pass through
it.

The constraints on each edge are described below in natural language. The code for them is
presented in Appendix A.

o Originale — Review AR: The AR must have been checked for correctness of form. A successful
checking sets the property .checked on the anomaly report to a true value, so the constraint
simply checks this value.

o Review AR — Rejecl: No constraint on entering the Reject room, but no anomaly report may
return to the Review AR room once it has been rejected.

o Review AR — Implement: The AR must have at least one RIMO associated with it. That is,
the AR’s .modreq property must be a list containing at least one descendant of the generic

RIMO object.

o Implement— Cancel and V&V — Cancel: As with Reject, no constraints are placed on enter-
ing Cancel, but no anomaly report may return via the return exit.

o Implement— Redefine: No RIMOs may pass through this exit, but an AR may pass through
in order to allow additional RIMOs to be attached to it. The edge returning to Implement is
unconstrained.

o Implement— VEV: Any RIMO passing through the exit must be complete (i.e., its .complete
property must have a true value). Generally, completion status is set by a combination of
error-free compilation of the product and adequate testing results. Furthermore, any RIMO
with a test object attached must also have a TLR attached to the test object.
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o V&V — Solved: Any AR passing through the exit must have only completed and verified
RIMOs and must have been approved (by the SGMR).

7.4 Implementation Task

The ImplementRIMO task in SLANG consists of an ER net that is used to implement a mod-
ification request as shown in Figure 8. Since the model of the task within SLANG is given as an
encapsulated ER net, we model this in PROMO by means of a sub-building as shown in Figure 9.

The interaction with the configuration management system represented in the SLANG model
can easily be represented as simple actions within PROMO, so we do not need to represent these as
tasks. We are left, then, with a simple transition between two tasks.

The only exit in the PROMO model of the I'mplement task lies between Update and Requalify.
The constraint on this exit requires simply that the product associated with the RIMO be up-to-
date with respect to its sources. There is, of course, no way for any such system to determine
whether the RIMO had actually been implemented. We use this constraint, then, simply to ensure
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that the product has been successfully built, so that at least the product is in a stable state.

7.5 Requalification Task

While the SLANG model of the RequalificationOfUpdales is fairly intricate, as shown in Fig-
ure 10, most of it centers around retrieving the tests and items. In fact, the only real action or
subtask within RequalificationOfUpdates is the actual running of tests. In PrRoMO, therefore, the
Requalify task consists of only one room.

7.6 Summary

The anomaly report process described here has been implemented in PRoMO. External tools,
such as editors and a script to run tests, can be used to manipulate the artifacts managed by the
process. Engineers engaged in the process can connect to the MOQO from remote sites and execute
the process.

One observation that may be made about the PROMO version of the change management process
is that, despite the omission of small system-level tasks from the process, it matches the original
SLANG definition quite closely. This confirms our hypothesis in Section 4.2.1 that the task-centered
metaphor corresponds well to conventional (e.g., Petri net-based) notions of process. The omission
of lower-level tasks in the PROMO version has both advantages and disadvantages. On the one
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hand, the model is greatly simplified and culled down to its essential tasks. On the other hand, the
omission of these details may be confusing to the uninitiated user, putting more of an onus on the
process modeler to provide detailed explanations of what the user must do to travel from activity
to activity.

8 Conclusion

Research in software process has matured to the point where it is now time to investigate suitable
metaphors for interactions with process-centered environments. In the past we have offered to the
user a rather direct mapping to the underlying execution model. For example, do we really want
the user to think of process execution as a traversal of a Petri net?

Given the growing popularity and success of virtual environments, we have tried to understand
how they might be applied in the domain of software process. We have described a number of
metaphors for process execution that fits within this context. Through a prototype, Promo,
we have explored one of those metaphors, the task-centered metaphor, to some depth. PromoO
demonstrates the promise of virtual environments in modeling and executing software processes.

Although we chose the task-centered metaphor in designing PROMO, other metaphors also show
promise in their ability to model software process. One avenue of future work, then, concerns the
exploration of these other metaphors and the comparison of those metaphors with the task-centered
metaphor.

Such a comparison would also lead to another avenue of research: the attempt to unify these
metaphors within one system. Just as a DBMS allows users to view data in any of several different
ways, a virtual environment might permit different portions of the environment to represent software
process using distinct metaphors. Ideally, the ability to combine metaphors would mitigate the
liabilities that any one metaphor demonstrates.

A further area of promising research is to consider how the metaphors offered by virtual envi-
ronments can be integrated with existing process-centered environments. For expediency, we built
our prototype, PROMO, completely within the virtual environment offered by LambdaM00. Thus,
while it serves to demonstrate the task-centered metaphor, PROMO is necessarily limited by the
capabilities of LambdaM00 to execute processes. The many years of research into process-centered
environments have resulted in what are likely to be more powerful platforms.

An example of such a platform is Oz [4]. Oz is an inherently distributed process execution
environment that offers the concept of multiple, interconnected workspaces. Recent extensions
to Oz have made it operable within the context of the Internet [35]. Rules can be specified to
regulate the actions that can be performed within and across workspaces. These rules provide both
automation of actions and enforcement of their application. Workspaces are obvious candidates
for implementing the rooms of a virtual environment. Rules provide a well-developed constraint
language. Appropriately structured, they can even simulate the “bots” found in MOOs. Oz also
provides a database that is akin to the databases found in MOOs. Finally, Oz supports flexible
concurrency control policies.
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A Constraints in PrRoMO

This appendix contains selected examples illustrating the constraint facility in PRoMoO. As
described in Section 6, the process modeler builds constraints by calling functions in order to
create an internal constraint representation. These functions exist as verbs on a utility object
called $constraint utils (or $cu for short).

The representation built by these functions is intended to be assigned to the property
.constraint on an exit; once this is done, the exit will automatically check this constraint with
respect to every object that attempts to pass through it, and it will permit the passage of only
those objects for which the constraint is true. Note that the constraint evaluation system examines
not only the top-level objects that pass through it, but also the contents of any object that passes
through it (and the contents of those objects). Hence, an object may be refused passage because
the constraint is false for an object contained by the main object.

Ideally, constraints should be expressible in some constraint language, and the system would
create the internal representation from expressions in this language rather than requiring the user
to call the functions directly. PrROMO does not currently have such a constraint language, and so
we describe the use of constraint-building functions below.

A.1 Building Constraints

The verbs on the constraint utility object, $cu, that govern the building of constraints are named
make_type, where lype designated the type of constraint to be built. For example, make relop makes
a relational operator, make_arithop makes an arithmetic operator, and so on. The arguments that
each function takes depend on what information is required for that type of constraint, as listed
below.

e make relop( exprl, op, expr2 ) creates a relational operator; its value will be true (1) if
the requested comparison is true and false (0) otherwise. Valid values of op are $cu.less,
$cu.lesseq, $cu.greater, $cu.greatereq, $cu.equal, and $cu.nequal.

e make arithop( exprl, op, expr2 ) creates an arithmetic expression; its value will be the
result of the requested mathematical operation. Valid values of op are $§cu.plus, $cu.minus,
$cu.mult, and $cu.div.

e make negop( expr ) creates a logical unary negation operator; its value will be the logical
negative of expr.

e make boolop( exprl, op, expr2 ) creates a boolean operator (and, or, etc.); its value will
be the result of the logical operation requested. Valid values of op are $cu.and, $cu.or,
$cu.xor, and $cu.implies.

e make prop( obj, propname ) creates a property reference operator; its value will be the
value of property propname on object obj.

e make let( var, expr, icomstr ) creates a Lisp-like “let” operator; its value will be the
value of iconstr with variable var bound to the value of expr.
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make_var( var ) creates a variable reference operator; its value will be the value of variable
var as bound by a let expression. Two variables are automatically bound: this, which
refers to the object trying to pass through the exit, and exit, which refers to the exit.
make_this() and make exit() are shorthand forms of make var( "this" ) and make_var(
"exit" ), respectively.

make_isa( obj, type ) creates a type-checking operator; its value will be true if obj is a
descendant of object type or false otherwise. type may be either an object identifier or an
object name.

make allop( var, set, iconstr ) creates a universal quantifier operator; its value will be
true if iconstr is true for every var in set or false otherwise.

make existop( var, set, iconstr ) creates an existential quantifier operator; its value
will be true if iconstr is true for at least one var in set.

An additional argument may be added to any of these functions. This argument should be a string
or list of strings to serve as the rationale for the constraint, as described in Section 6. If the value of
the constraint is false, this string is printed out to the user as the reason why the constraint failed.
The string may contain printf-style formatting sequences to refer to various values relevant to the
constraint’s failure.

A.2 Examples: Constraints in the Anomaly Report Process

The following are all of the constraints used in the modeling of the anomaly report process.

They have been included here to serve as illustrative examples of the process of building constraints
in ProMoO.

o Originale — Review AR: If the object being checked is an anomaly report, then its .checked
property must be true (i.e., non-zero).

$cu:make_boolop( $cu:make_isa( $cu:make_this(), $probrpt ),
$cu.implies,
$cu:make_prop( $cu:make_this(), "checked" ),
"Anomaly report %nO has not yet been (successfully) checked." )

o Reject— Review AR: The object being checked may not be an anomaly report.

$cu:make_negop( $cu:make_isa( $cu:make_this(), "anomaly report" ),
{"Sorry, rejected ARs can’t be brought back from the dead--",
" you’ll have to drop %00 before you can leave."} )

o Review AR — Implement: If the object being checked is an anomaly report, its .modreq
property must not be the empty list ( {} ).
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$cu:make_boolop( $cu:make_isa( $cu:make_this(), $probrpt ),
$cu.implies,
$cu:make_relop( $cu:make_prop( $cu:make_this(), "modreq" ),
$cu.nequal,
$cu:make_quote( {} ) ),
{"You cannot begin implementing AR %nO without adding at least one
RIMO to it.",
" Use ‘@setrv modreq <RIMO> on %n0O’ to add an RIMO to it."} )

Implement— Cancel: The object being checked may not be an anomaly report.

$cu:make_negop( $cu:make_isa( $cu:make_this(), "anomaly report" ),
{"Sorry, cancelled ARs can’t be brought back from the dead--",

" you’ll have to drop %400 before you can leave."} )

V&V — Cancel: The object being checked may not be an anomaly report.

$cu:make_negop( $cu:make_isa( $cu:make_this(), "anomaly report" ),
{"Sorry, cancelled ARs can’t be brought back from the dead--",

" you’ll have to drop %00 before you can leave."} )

Implement— Redefine: The object being checked may not be a modification request.

$cu:make_negop( $cu:make_isa( $cu:make_this(), "modification request" ),
{"Sorry, RIMOs are not allowed in the Redefine activity.",
"+ Please drop them here before continuing."} )

Implement— VE&V: If the object being checked is a modification request, it must be complete
and all its tests (if such tests exist) must have compared successfully with the desired outputs.

$cu:make_boolop( $cu:make_isa( $cu:make_this(), "modification request" ),
$cu.implies,
$cu:make_boolop( $cu:make_prop( $cu:make_this(), "complete" ),
$cu.and,
$cu:make_let( "ts", $cu:make_prop( $cu:make_this(), "test_set" ),
$cu:make_boolop( $cu:make_relop( $cu:make_var( "ts" ),
$cu.equal, #-1 ),
$cu.or,
$cu:make_allop( "x",
$cu:make_prop( $cu:make_var( "ts" ), "tests" ),
$cu:make_relop( $cu:make_prop( $cu:make_var( "x" ),
""compare" ),
$cu.equal, 1),
"Test %02 did not accurately compare with its output." )

2)))
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o V&V — Solved: If the object being checked is an anomaly report, its .complete property must
be true, and each of its modification requests must have a true-valued .complete property

as well.

$cu:make_boolop( $cu:make_isa( $cu:make_this(), $probrpt ),

$cu.implies,
$cu:make_boolop( $cu:make_relop( $cu:make_prop( $cu:make_this,
"complete" ),

$cu.nequal,

0,

"Anomaly report %00 has not been flagged as complete" ),
$cu.and,

$cu:make_allop( "ar",
$cu:make_prop( $cu:make_this(), "modreq" ),

$cu:make_prop( $cu:make_var( "ar" ), "complete" ),
"Anomaly report not yet finished: RIMO %02 is not complete." ) ) )
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